Here are the results from my MATLAB code.

$$
\begin{array}{ll}
\hline \mathrm{p} 1=0.030 & (1 a) \\
\mathrm{P}\left[\mathrm{~N} _\mathrm{k}=30\right]=0.073 & (1 c) \\
\mathrm{A}=78 & (1 d . i i)
\end{array}
$$

Frequency of occurrence for $\left\{N_{-} k=30\right\}=0.078 \quad(1 d . i i j)$
Frequency of occurrence for $\left\{W_{-} k>2\right.$ ins $\}=0.368$ (ie)

$$
\begin{equation*}
P\left[W_{-} k>2 \text { ins }\right]=0.368 \quad(1 \bar{f}) \tag{3a}
\end{equation*}
$$

$V=29946$
D is a geometric rev. with mean $=33.333$ and parameter $r=$ 0.970 (36)
$\mathrm{B}=5962 \quad(3 c i)$
The proportion of call requests that were blocked is $B / V=0.199$
From Erlang B formula, the blocking probability is 0.200
(1) $T=1,000 \mathrm{hrs}$.
$\lambda=30$ arrivals per hour

$$
n=10^{6}
$$

(a) $p_{1}=$ the probability of exactly one arrival in a slot.
$=$ the mean number of arrivals in a slot (becave the randum variable is Bernoulli.)

$$
=\lambda \times \frac{T}{n}=30 \times \frac{1000}{10^{6}}=0.03
$$

(b) -
(c) Time is divided into $m=1000$ nonoverlapping inter vals.
$\begin{aligned} \text { (i) Mean }=\mathbb{E} N_{k}= & \lambda \times \underbrace{\frac{T}{m}}=30 \times \frac{1000}{10^{3}}=30 \\ & \text { width of each } \\ & \text { interval } \\ \ldots & 30 \text {...n... }\end{aligned}$

$$
\left.\begin{array}{l}
\text { (ii) } \\
\text { (iii) }
\end{array}\right\}^{p}\left[N_{k}=30\right]=e^{30^{-}} \frac{30^{30}}{30!}=0.073
$$

(Recall that the pant of a poisson riv. is given by

$$
P_{N}(k)=P[N=k]=e^{-\alpha} \frac{\alpha^{k}}{k!}
$$

where α is the mean. (iv) $P\left[N_{k}=10.5\right]=0$.
poisson riv. only takes integer values.
(d) (i)

$$
p p
$$

The command divide the pp (row vector) into m intervals.

Each piece becomes a column of,.

The sum commend adds un the 1 's in the same column. So, the vector N consists of m member. The $k^{\text {th }}$ member is the sum of values in the $k^{\text {th }}$ column of . Because the $1^{\text {'s }}$ indicate arrivals, the $k^{\text {th }}$ member of the vector N is N_{k}.
(ii) My MATLAB gives $A=78$.
(iii) $\frac{A}{m}=0.078$ which is close to the theoretical value of 0.073 in part (c .ii).
(e) 0.368 (MATLAB) $\uparrow \quad 1$
$\begin{array}{ll}\text { (e) } 0.368 & \text { (MATLAB) } \\ \text { (f) } 0.368 & \text { (MATLAB) }\end{array}$ the same!
(2) (a) $f_{x}(x)=\frac{1}{\lambda} e^{-\lambda} e_{b}, x>0$
(b) $\int_{a}^{b^{x}} f_{x}(x) d x=\int_{a}^{b^{\prime}} \frac{1}{\mu} e^{-\mu} x d x=-\left.e^{-\mu}\right|_{a} ^{b}$

$$
=e^{-a \mu}-e^{-b \mu}
$$

(c) $a=(k-1) T$ and $b=k T$

$$
\begin{aligned}
\int_{a}^{b} f_{x}(a) d x & =e^{-(k-1) T \mu}-e^{-k T \mu} \\
& =e^{-(k-1) T \mu}\left(1-e^{-T \mu}\right)
\end{aligned}
$$

(d) $p_{k}=e^{-(k-1) T \mu}\left(1-e^{-T \mu}\right), k=1,2,3, \ldots$
is Geometric with $r=e^{-T \mu}$.
(3) (a) $V=29946$ (MATLAB)
(b) (i) D is geometric: $\rho[D=k]=(1-r) r^{k-1}$

In this case, the T in (2) is replaced by $\frac{I}{n}=\frac{1000}{106}=\frac{1}{10^{3}} \mathrm{hr}$.
So, $r=e^{-\frac{T}{n} \mu} \approx 1-\frac{T}{n} \mu$
Note that $\frac{1}{\mu}=2 \mathrm{~min}=\frac{2}{60} \mathrm{hr}$.

$$
=\frac{1}{30} \mathrm{hr} .
$$

Therefore,
(ii)

$$
r=e^{-\frac{1}{1000} \times 30} \approx 0.97
$$

For geometric riv. D with $P_{D}(k)=(1-r) r^{k-1}$

$$
=\cdots \sum_{\infty}^{\infty}, \ldots \ldots, k-1, \sum_{1}^{\infty}, \ldots k-1
$$

$$
\text { IED }=\sum_{k=1}^{\infty} k(1-r) r^{k-1}=(1-r) \sum_{k=1}^{\infty} k r^{k-1}
$$

Recall that

$$
\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}
$$

Taking $\frac{d}{d r}$ on both sides we hae

$$
\begin{aligned}
& \sum_{k=1}^{\infty} k r^{k-1}=-\frac{1}{(1-r)^{2}}(-1)=\frac{1}{(1-r)^{2}} \\
\text { IE } D & =(1-k) \times \frac{1}{(1-r)^{2}}=\frac{1}{1-r} \\
& \approx \frac{1}{1-\left(1-\frac{T}{n} \mu\right)}=\frac{1}{I \mu}=\frac{n}{T} \times \frac{1}{\mu} \\
& =10^{3} \times \frac{1}{30} \approx 33.3 \text { slots }
\end{aligned}
$$

(c) (i) $B=5962$ (MATLAB)
(ii) $\frac{B}{V}=0.199$ (MATLAB)

Note that $A=\frac{\lambda}{\mu}=\left\{0 \times \frac{1}{30}=1\right.$
From Erlang B,

$$
\begin{aligned}
& P_{b}=\frac{A^{2} / 2!}{1+A+\frac{A^{2}}{2}}=\frac{A^{2}}{2+2 A+A^{2}}=\frac{1}{5} \\
&=0.2 \text { almost the save as } \\
& \text { simulation result. }
\end{aligned}
$$

